
Part 1: The Foundation of Your Flock

Intro: Start with the Duck
You don’t need all the answers to be a great leader. You just need to ask better questions. You
need to listen, reflect, and create the kind of space where clarity can emerge—sometimes just
by saying the messy thing out loud.

In Engineering, “rubber duck debugging” is the practice of talking through a problem—literally to
a rubber duck—until the solution reveals itself. But what if that practice wasn’t just for stuck
code?

What if it was a foundational leadership skill?

Rubber ducking can be a management superpower:

●​ It helps you clarify decisions.
●​ It improves team communication.
●​ It shifts your team from feature factories to outcome-focused thinkers.
●​ It helps you measure what matters—and rethink the metrics that don’t.

Talking it out isn’t just helpful—it’s essential.

What You’ll Learn in Part 1

●​ Why speaking ideas aloud helps surface assumptions, risks, and insights early.
●​ How to encourage “imperfect” thinking in your team to prevent late-stage surprises.
●​ How to rubber duck your own complex decisions as a form of self-coaching.
●​ Why impact matters more than activity—and how to coach your team to see that.
●​ How traditional metrics like story points and velocity can deceive—and what to look at

instead.

While this book focuses on software product teams, the rubber ducking leadership mindset
applies across industries and functions.

Chapter 1 - Why Rubber Ducks Make Great
Managers (Yes, Really)

Goal: Be a Rubber Duck.

You’re sitting at a desk with an Engineer who’s stuck. They start explaining the problem, just
talking it out. Halfway through their own explanation, they pause—eyes wide—and say: “Wait, I
think I just figured it out.”

You didn’t say a word. You just sat there. Maybe you nodded. Maybe you said “mhmm.” Maybe
you asked some clarifying questions by repeating back to them what they said or paraphrased
and asked if that felt true. And yet—they got unstuck.

That’s the power of being a rubber duck.

Being a great Engineering Manager doesn’t always mean having the answers—it means
creating the space where others can find them. The “rubber duck” method in
programming—explaining your thought process out loud to an inanimate duck to debug your
thinking—isn’t just cute. It’s a coaching philosophy.

As a Rubber Duck Manager, your role isn’t to hand out answers—it’s to help your team sharpen
their thinking. You’re there to ask the right questions, reflect back what you’re hearing, and help
clarify the fuzziness without taking over the solution.

You create the kind of psychological safety where people feel comfortable saying, “I’m stuck,” or
“Can I talk this through?”—without fear of looking unprepared. And when those moments come,
you don’t jump in to solve the problem for them. Instead, you guide gently. You help them notice
what they might be missing, spot patterns, or reframe the question.

Your goal is to support their growth—not short-circuit it. Let them discover the answer—but let
them know you’re right there, paddling alongside them.

You’re not the hero. They are. You’re the duck.​

Lesson: When you solve the problem for them, you rob them of the clarity, growth, and
confidence they gain from thinking it through themselves. If your team feels like they need
you to think for them, you're not rubber ducking—you’re micromanaging.

How to be a Rubber Duck

●​ Ask more questions than you answer. (“What have you tried?”, “What’s blocking
you?”, “What assumptions are you making?”)

●​ Get comfortable with silence. Sometimes people just need space to process.
●​ Repeat back what you hear. It helps clarify misunderstandings or solidify their thinking.
●​ Don’t be afraid to say, “I don’t know.” It models vulnerability and opens space for

collaborative problem-solving.

Anti-patterns to Avoid:

●​ Jumping in to solve the problem instead of letting the other person think it through.
●​ Creating a "manager knows best" culture where Engineers stop thinking critically.

Anti-pattern Examples:

●​ An Engineer begins explaining a tricky bug, and before they even finish the first
sentence, the manager interrupts with "Oh, you probably just need to check the
database connections."

●​ During a 1:1, an Individual Contributor tries to reason through a career decision, but the
manager quickly offers a "solution path" rather than helping the Individual Contributor
reflect on what matters most to them.

●​ In a standup, a team member mentions an ambiguous requirement. Instead of letting the
team propose ideas, the manager immediately dictates the solution they think is fastest.

●​ Engineers start waiting for the manager to "bless" their designs rather than working
collaboratively or taking ownership.

●​ In retros, team members hesitate to suggest ideas because they assume the manager
already has the "right" answer.

●​ Junior Engineers become dependent on constant validation before taking action, slowing
down development and harming their confidence over time.

Coaching Prompts - Chapter 1

1) When was the last time you helped someone without solving the problem for them?

2) How do you respond when someone brings you a problem—fixer, guide, listener?

3) What do you believe your team needs from you most: answers, guidance, or space?

4) What’s one way you could make your 1:1s more “rubber duck-friendly”?

Chapter 36 - Rubber Ducking Product Strategy
Goal: Use collaborative rubber ducking to align Engineering, Product, and Design around
outcomes—not just outputs.

The sprint kicks off. Tickets are scoped. Design handed off. Engineers start coding.

But mid-sprint, a developer rubber ducks a question aloud:

“Why are we building it this way again?”

No one remembers the customer research. The Product Manager isn’t on the call. And the ticket
just says, “Add multi-user mode.”

You realize: the team didn’t align on the outcome. They’re executing without understanding. And
if no one pauses to rubber duck strategy, they’ll ship something that technically works—but
doesn’t actually solve the problem.

Lesson: Strategy is a conversation, not a spec. Rubber ducking strategy means thinking
with Product—not after them.

It’s not about Engineers dictating roadmap priorities. It’s about shared alignment on what
problem we’re solving, why it matters, and what constraints we’re working within.

When Engineers and Product Managers rubber-duck the problem space together:

●​ Scope gets smarter, not bigger
●​ MVPs get tighter, not bloated
●​ Collaboration feels like a partnership—not a handoff

How to Rubber Duck Product Strategy Without Overstepping

Rubber Duck Together Early​
Involve Engineers and Designers before the spec is locked. Use early working sessions to align
on:

●​ Customer pain points
●​ MVP boundaries
●​ Possible edge cases
●​ Tradeoffs between time, value, and complexity

Invite Engineers to listen to customer interviews. Let Designers see the codebase constraints.
That’s real strategy alignment.

Anchor Strategy in Business Outcomes​
Your job as a manager is to draw the line between the task and the impact:

●​ “This onboarding redesign supports our conversion goal.”
●​ “This performance fix reduces churn for our large account users.”
●​ “This internal tool reduces rework and improves velocity.”

Even Engineers who aren’t business-minded can connect their work to purpose if you translate
it clearly.

Let Engineers Propose MVPs​
If Engineers don’t understand the outcome, they can’t suggest alternatives. When they do
understand, they might offer:

●​ A faster, simpler solution
●​ A stopgap that buys time
●​ A reusable component that serves multiple needs

Scope negotiation becomes possible—not adversarial.

Respect Roles—but Stay Curious​
Yes, Product owns the what. Engineering owns the how. But the best teams rubber duck
both—together.

If an Engineer questions the strategy:

“Why this feature, not that one?”

Let it be an invitation, not a challenge. Build empathy both ways.

If an Engineer gets prescriptive with the roadmap, ask:

“What’s the customer problem you’re trying to solve?”

Teach Engineers to influence by aligning—not by bypassing.

Anti-Patterns to Avoid:

●​ “Just build what’s in the ticket.” Silences critical thinking and undermines ownership.
●​ Overly prescriptive specs from Product Managers. Eliminates space for Engineering

creativity or technical tradeoffs.
●​ Engineers rubber ducking with each other but not with Product. Great ideas stay

siloed and Product gets blindsided.
●​ Dismissive responses to scope negotiation. If a Product Manager always says, “Let’s

not overcomplicate,” Engineers learn not to speak up.

Anti-Pattern Examples:

●​ A Product Manager delivers a detailed spec, and an Engineer flags a faster
implementation that could deliver 80% of the value in half the time. The Product
Manager shuts it down with, “We already decided—just build what’s in the ticket.” The
result? Burnout, frustration, and missed velocity goals.

●​ A Designer proposes a sleek new UI. The Engineer flags that it’ll require re-architecting
a core component. The Designer says, “That’s not my problem.” Weeks later, the
deadline slips—surprising no one.

●​ Engineers rubber duck a product performance concern privately, but don’t loop in
Product. They cut scope mid-sprint to stay on time. Product Manager is shocked in
demo: “This isn’t what we planned!” The team built smarter—but misaligned.

●​ A junior Engineer suggests a simpler implementation path. A tech lead dismisses them:
“That’s not how we do things.” The idea was valid, but ego won over outcome.

Waddle Wisdom: Coaching Engineers on Product Thinking

When an Individual Contributor asks “Why are we building this?”, that’s a golden egg moment.
Help them:

●​ Ask better questions
●​ Tie technical decisions to business outcomes
●​ Rubber duck with Product Managers and Designers earlier
●​ Frame alternatives in terms of customer impact, not Engineering elegance

You’re not just managing delivery—you’re coaching contributors who can shape the strategy.

Coaching Prompts – Chapter 36

1) Do my Engineers understand the why behind their work—or just the what?

2) How often does our team rubber duck product strategy before it becomes a sprint ticket?

3) What habits or rituals help surface assumptions earlier?

4) When was the last time an Engineer proposed a scope change that benefited the business?

5) How am I helping Engineers and Product Managers think like a shared brain—not separate
departments?

Chapter 37 -Translating Engineering Into Business
Outcomes

Goal: Help your team consistently connect their work to measurable business value.

It’s the end-of-sprint demo. The team showcases a redesigned notification settings page.​
​
“We refactored the component structure and added support for dynamic rendering based on
user roles,” the Engineer says.​
​
Heads nod. But the stakeholders squint.​
​
“So…what’s the impact?” someone asks.​
​
The room stalls. “Uh, it’s cleaner now. And more future-proof.”

Technically true. But strategically? A swing and a miss.

Lesson: Business impact is a daily practice, not just a presentation. If your team can only
speak “value” when preparing for exec reviews, you’ve got a translation gap. ​
​
Every sprint, every ticket, every pull request is an opportunity to connect the dots between
what we’re building and why it matters.

This chapter is about building that reflex. Making it so natural, so embedded, that it becomes
second nature—even for your most heads-down Engineers.

How to Help Your Team Build the Translation Reflex

Normalize Business Thinking in Daily Workflow​
Create rituals that surface impact, not just activity:

●​ Add a “why it matters” bullet in every demo or ticket
●​ Use standup to ask, “What customer pain is this solving?”

●​ During sprint planning, prompt: “What’s the outcome if we nail this?”

If your team uses PR templates, add a field:

“What’s the business or user value of this change?”

Start With Outcomes, Not Tasks​
When assigning or discussing work, lead with what success looks like from a business or user
perspective, not just an Engineering lens:

●​ Instead of: “Update how we handle notification preferences”
●​ Try: “Improve onboarding completion by ensuring users get the right alerts at the right

time”

Framing unlocks better Engineering choices. Engineers can suggest more elegant or efficient
solutions when they understand what’s actually at stake.

Build the Vocabulary Together​
Run a workshop with your team. Take a recent feature and map it to:

●​ The customer problem it solves
●​ The company OKR it supports
●​ The measurable impact it had

Most teams discover gaps between what they thought they were building and the real outcome.
That’s the gold. Use it to reinforce better framing habits.

Share real company OKRs or KPIs in sprint kickoffs or retros. Connect features to them
explicitly: “This feature ladders up to our Q2 churn reduction goal.”

Model It in Your Own Communication​
As an Engineering Manager, your job isn’t just to coach—it’s to embody the mindset.​
Don’t say:

“We need another sprint—it’s more complex than expected.”

Do say:

“To ensure performance at scale, we need an extra sprint. This protects customer
experience for our enterprise users, which is a key retention driver this quarter.”

Your Individual Contributors are listening. Show them how it’s done.

Make Feedback About Impact, Too

When giving feedback—especially during reviews or 1:1s—go beyond code quality:

●​ “This was a clean implementation” = good
●​ “This improved sign-up completion by 7%” = great

When Engineers start associating their wins with outcomes, they start thinking beyond the
commit log.

Waddle Wisdom: Reframe the "Definition of Done"

Too often, “done” means the code works and passes QA. But what if “done” also meant:

●​ The business goal is met
●​ The rollout was measured
●​ The learning was captured

That’s the shift from shipping code to shipping impact.

Anti-patterns to Avoid:

●​ Delivering features without tracking their outcomes. If you don’t know whether it
worked, you didn’t finish the job.

●​ Treating business value as “not my job.” Strategic Engineers understand that code is
only one layer of impact.

●​ Assuming Product will handle all the framing. It’s a partnership. Rubber duck
together, and you’ll both sharpen your thinking.

●​ Mistaking “done faster” for “done better.” Sometimes the faster solution leads to
lower impact or more churn. Prioritize outcomes, not just output.​

Coaching Prompts – Chapter 37

1) How often does our team discuss business impact during planning or demos?

2) When I review PRs, do I comment on value—or just code?

3) What rituals could we introduce to reinforce outcome-focused thinking?

4) Do my Engineers understand how their work maps to OKRs, retention, revenue, or user
satisfaction?

5) What small shifts would help me (and my team) practice business translation every week?

Chapter 38 - Prioritizing Tech Debt Without Losing
Credibility

Goal: Maintain team trust and collaborative momentum while balancing the need to address
technical debt.

You’re planning a major feature rollout. Product is excited. Design has polished mocks. Then
your squad flags a serious problem: the codebase for this flow is ancient. It’s held together by
duct tape, brittle tests, and hope.

You say: “We should really refactor first.”​
The Product Manager blinks. “How long will that take?”​
You know what’s coming next: “Do we have to?”

Now you’re in the hot seat. If you push too hard, you’re “blocking progress.” If you don’t, you risk
shipping on a crumbling foundation. Welcome to the art of prioritizing tech debt.

Lesson: Tech debt is also a trust conversation. Prioritizing tech debt isn’t just about the
business. It’s about balancing credibility, team morale, and delivery commitments. If you
always say “yes” to tech debt, Product stops trusting your sense of urgency. If you never
say “yes,” your team starts to disengage.

Prioritizing Without Losing Trust

Build a Shared Language with Your Product Manager​
Create a mutual rubric for prioritization:

●​ Does this debt block an upcoming feature?
●​ Is it causing churn, bugs, or delays?
●​ Can we scope this into the current roadmap item?

Make Tech Debt Predictable, Not Panicked​
No one likes last-minute fire alarms. Establish lightweight, recurring processes:

●​ A standing “tech health” agenda item in grooming
●​ 10–20% tech debt allocation per sprint
●​ A shared backlog of tech debt, ranked by impact

Normalize Surfacing It Early​
Encourage your Engineers to raise tech debt early—during pre-grooming, spike planning, or
even while pair-ducking design ideas. Quack about it before the code cracks. It’s way easier to
reroute a duckling than redirect a full-grown mallard mid-flight.

Coach Your Engineers on Framing It Collaboratively​
Help your team avoid “we can’t do this” energy. Instead, coach them to say:

●​ “If we take this on first, the feature becomes easier to extend later.”
●​ “Here’s what’s risky if we skip the refactor.”
●​ “We could do a partial refactor in parallel—would that be acceptable?”

Make it negotiable, not absolute. Say: “We could build it as-is, but it’ll cost us X time in QA or Y
risk later.” Invite discussion on tradeoffs, not ultimatums.

Anti-patterns to Avoid:

●​ Surprise Debt Drops: Raising tech debt concerns only after the sprint is committed.
●​ Over-engineering the Ask: Requesting massive refactors with no roadmap alignment.
●​ Making it Emotional: “This is garbage code” = instant credibility loss.
●​ Skipping Collaboration: Framing tech debt as Engineering’s decision alone.

Anti-pattern Examples:

●​ A team flags tech debt the day before a launch and says, “We can’t move forward until
we refactor.” The Product Manager feels ambushed and distrust sets in.

●​ An Engineering Manager requests a full sprint for “tech hygiene” without naming specific
outcomes or business benefits. The execs decline the ask and deprioritize it in future
planning cycles.

●​ A senior Engineer refuses to work on a ticket because the legacy code is “too
painful”—but doesn’t surface it until the task is overdue. Now the conversation is
reactive, not strategic.

Waddle Wisdom: Managing Tech Debt as a Team Sport

Tech debt prioritization is relational, not just technical. It’s about trust and timing:

●​ Trust from your Engineers that you’ll advocate when it matters
●​ Trust from your Product Manager that you won’t block value without reason
●​ Trust in your own ability to weigh the long-term health of the system against the

short-term needs of the business.

Coaching Prompts – Chapter 38

1) How am I currently surfacing tech debt—early and collaboratively, or late and urgently?

2) Where have I framed debt in emotional or technical terms instead of business ones?

3) What rituals could help my team make tech debt visible and predictable?

4) Where might my Product Manager be losing trust because I haven’t explained the tradeoffs
clearly?

	Part 1: The Foundation of Your Flock
	What You’ll Learn in Part 1

	Chapter 1 - Why Rubber Ducks Make Great Managers (Yes, Really)
	How to be a Rubber Duck
	Anti-patterns to Avoid:
	Anti-pattern Examples:
	Coaching Prompts - Chapter 1

	Chapter 36 - Rubber Ducking Product Strategy
	How to Rubber Duck Product Strategy Without Overstepping
	Anti-Patterns to Avoid:
	Anti-Pattern Examples:
	Waddle Wisdom: Coaching Engineers on Product Thinking
	Coaching Prompts – Chapter 36

	
	Chapter 37 -Translating Engineering Into Business Outcomes
	How to Help Your Team Build the Translation Reflex
	Make Feedback About Impact, Too
	Waddle Wisdom: Reframe the "Definition of Done"
	Anti-patterns to Avoid:
	Coaching Prompts – Chapter 37

	
	Chapter 38 - Prioritizing Tech Debt Without Losing Credibility
	Prioritizing Without Losing Trust
	Anti-patterns to Avoid:
	Anti-pattern Examples:
	Waddle Wisdom: Managing Tech Debt as a Team Sport
	Coaching Prompts – Chapter 38

	

